(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
min(0, y) → 0
min(x, 0) → 0
min(s(x), s(y)) → s(min(x, y))
max(0, y) → y
max(x, 0) → x
max(s(x), s(y)) → s(max(x, y))
twice(0) → 0
twice(s(x)) → s(s(twice(x)))
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
p(s(x)) → x
f(s(x), s(y)) → f(-(max(s(x), s(y)), min(s(x), s(y))), p(twice(min(x, y))))
Rewrite Strategy: INNERMOST
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
min(0', y) → 0'
min(x, 0') → 0'
min(s(x), s(y)) → s(min(x, y))
max(0', y) → y
max(x, 0') → x
max(s(x), s(y)) → s(max(x, y))
twice(0') → 0'
twice(s(x)) → s(s(twice(x)))
-(x, 0') → x
-(s(x), s(y)) → -(x, y)
p(s(x)) → x
f(s(x), s(y)) → f(-(max(s(x), s(y)), min(s(x), s(y))), p(twice(min(x, y))))
S is empty.
Rewrite Strategy: INNERMOST
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
Innermost TRS:
Rules:
min(0', y) → 0'
min(x, 0') → 0'
min(s(x), s(y)) → s(min(x, y))
max(0', y) → y
max(x, 0') → x
max(s(x), s(y)) → s(max(x, y))
twice(0') → 0'
twice(s(x)) → s(s(twice(x)))
-(x, 0') → x
-(s(x), s(y)) → -(x, y)
p(s(x)) → x
f(s(x), s(y)) → f(-(max(s(x), s(y)), min(s(x), s(y))), p(twice(min(x, y))))
Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
twice :: 0':s → 0':s
- :: 0':s → 0':s → 0':s
p :: 0':s → 0':s
f :: 0':s → 0':s → f
hole_0':s1_0 :: 0':s
hole_f2_0 :: f
gen_0':s3_0 :: Nat → 0':s
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
min,
max,
twice,
-,
fThey will be analysed ascendingly in the following order:
min < f
max < f
twice < f
- < f
(6) Obligation:
Innermost TRS:
Rules:
min(
0',
y) →
0'min(
x,
0') →
0'min(
s(
x),
s(
y)) →
s(
min(
x,
y))
max(
0',
y) →
ymax(
x,
0') →
xmax(
s(
x),
s(
y)) →
s(
max(
x,
y))
twice(
0') →
0'twice(
s(
x)) →
s(
s(
twice(
x)))
-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
p(
s(
x)) →
xf(
s(
x),
s(
y)) →
f(
-(
max(
s(
x),
s(
y)),
min(
s(
x),
s(
y))),
p(
twice(
min(
x,
y))))
Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
twice :: 0':s → 0':s
- :: 0':s → 0':s → 0':s
p :: 0':s → 0':s
f :: 0':s → 0':s → f
hole_0':s1_0 :: 0':s
hole_f2_0 :: f
gen_0':s3_0 :: Nat → 0':s
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
min, max, twice, -, f
They will be analysed ascendingly in the following order:
min < f
max < f
twice < f
- < f
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
min(
gen_0':s3_0(
n5_0),
gen_0':s3_0(
n5_0)) →
gen_0':s3_0(
n5_0), rt ∈ Ω(1 + n5
0)
Induction Base:
min(gen_0':s3_0(0), gen_0':s3_0(0)) →RΩ(1)
0'
Induction Step:
min(gen_0':s3_0(+(n5_0, 1)), gen_0':s3_0(+(n5_0, 1))) →RΩ(1)
s(min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0))) →IH
s(gen_0':s3_0(c6_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
Innermost TRS:
Rules:
min(
0',
y) →
0'min(
x,
0') →
0'min(
s(
x),
s(
y)) →
s(
min(
x,
y))
max(
0',
y) →
ymax(
x,
0') →
xmax(
s(
x),
s(
y)) →
s(
max(
x,
y))
twice(
0') →
0'twice(
s(
x)) →
s(
s(
twice(
x)))
-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
p(
s(
x)) →
xf(
s(
x),
s(
y)) →
f(
-(
max(
s(
x),
s(
y)),
min(
s(
x),
s(
y))),
p(
twice(
min(
x,
y))))
Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
twice :: 0':s → 0':s
- :: 0':s → 0':s → 0':s
p :: 0':s → 0':s
f :: 0':s → 0':s → f
hole_0':s1_0 :: 0':s
hole_f2_0 :: f
gen_0':s3_0 :: Nat → 0':s
Lemmas:
min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
max, twice, -, f
They will be analysed ascendingly in the following order:
max < f
twice < f
- < f
(10) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
max(
gen_0':s3_0(
n397_0),
gen_0':s3_0(
n397_0)) →
gen_0':s3_0(
n397_0), rt ∈ Ω(1 + n397
0)
Induction Base:
max(gen_0':s3_0(0), gen_0':s3_0(0)) →RΩ(1)
gen_0':s3_0(0)
Induction Step:
max(gen_0':s3_0(+(n397_0, 1)), gen_0':s3_0(+(n397_0, 1))) →RΩ(1)
s(max(gen_0':s3_0(n397_0), gen_0':s3_0(n397_0))) →IH
s(gen_0':s3_0(c398_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(11) Complex Obligation (BEST)
(12) Obligation:
Innermost TRS:
Rules:
min(
0',
y) →
0'min(
x,
0') →
0'min(
s(
x),
s(
y)) →
s(
min(
x,
y))
max(
0',
y) →
ymax(
x,
0') →
xmax(
s(
x),
s(
y)) →
s(
max(
x,
y))
twice(
0') →
0'twice(
s(
x)) →
s(
s(
twice(
x)))
-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
p(
s(
x)) →
xf(
s(
x),
s(
y)) →
f(
-(
max(
s(
x),
s(
y)),
min(
s(
x),
s(
y))),
p(
twice(
min(
x,
y))))
Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
twice :: 0':s → 0':s
- :: 0':s → 0':s → 0':s
p :: 0':s → 0':s
f :: 0':s → 0':s → f
hole_0':s1_0 :: 0':s
hole_f2_0 :: f
gen_0':s3_0 :: Nat → 0':s
Lemmas:
min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
max(gen_0':s3_0(n397_0), gen_0':s3_0(n397_0)) → gen_0':s3_0(n397_0), rt ∈ Ω(1 + n3970)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
twice, -, f
They will be analysed ascendingly in the following order:
twice < f
- < f
(13) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
twice(
gen_0':s3_0(
n893_0)) →
gen_0':s3_0(
*(
2,
n893_0)), rt ∈ Ω(1 + n893
0)
Induction Base:
twice(gen_0':s3_0(0)) →RΩ(1)
0'
Induction Step:
twice(gen_0':s3_0(+(n893_0, 1))) →RΩ(1)
s(s(twice(gen_0':s3_0(n893_0)))) →IH
s(s(gen_0':s3_0(*(2, c894_0))))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(14) Complex Obligation (BEST)
(15) Obligation:
Innermost TRS:
Rules:
min(
0',
y) →
0'min(
x,
0') →
0'min(
s(
x),
s(
y)) →
s(
min(
x,
y))
max(
0',
y) →
ymax(
x,
0') →
xmax(
s(
x),
s(
y)) →
s(
max(
x,
y))
twice(
0') →
0'twice(
s(
x)) →
s(
s(
twice(
x)))
-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
p(
s(
x)) →
xf(
s(
x),
s(
y)) →
f(
-(
max(
s(
x),
s(
y)),
min(
s(
x),
s(
y))),
p(
twice(
min(
x,
y))))
Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
twice :: 0':s → 0':s
- :: 0':s → 0':s → 0':s
p :: 0':s → 0':s
f :: 0':s → 0':s → f
hole_0':s1_0 :: 0':s
hole_f2_0 :: f
gen_0':s3_0 :: Nat → 0':s
Lemmas:
min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
max(gen_0':s3_0(n397_0), gen_0':s3_0(n397_0)) → gen_0':s3_0(n397_0), rt ∈ Ω(1 + n3970)
twice(gen_0':s3_0(n893_0)) → gen_0':s3_0(*(2, n893_0)), rt ∈ Ω(1 + n8930)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
-, f
They will be analysed ascendingly in the following order:
- < f
(16) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
-(
gen_0':s3_0(
n1197_0),
gen_0':s3_0(
n1197_0)) →
gen_0':s3_0(
0), rt ∈ Ω(1 + n1197
0)
Induction Base:
-(gen_0':s3_0(0), gen_0':s3_0(0)) →RΩ(1)
gen_0':s3_0(0)
Induction Step:
-(gen_0':s3_0(+(n1197_0, 1)), gen_0':s3_0(+(n1197_0, 1))) →RΩ(1)
-(gen_0':s3_0(n1197_0), gen_0':s3_0(n1197_0)) →IH
gen_0':s3_0(0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(17) Complex Obligation (BEST)
(18) Obligation:
Innermost TRS:
Rules:
min(
0',
y) →
0'min(
x,
0') →
0'min(
s(
x),
s(
y)) →
s(
min(
x,
y))
max(
0',
y) →
ymax(
x,
0') →
xmax(
s(
x),
s(
y)) →
s(
max(
x,
y))
twice(
0') →
0'twice(
s(
x)) →
s(
s(
twice(
x)))
-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
p(
s(
x)) →
xf(
s(
x),
s(
y)) →
f(
-(
max(
s(
x),
s(
y)),
min(
s(
x),
s(
y))),
p(
twice(
min(
x,
y))))
Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
twice :: 0':s → 0':s
- :: 0':s → 0':s → 0':s
p :: 0':s → 0':s
f :: 0':s → 0':s → f
hole_0':s1_0 :: 0':s
hole_f2_0 :: f
gen_0':s3_0 :: Nat → 0':s
Lemmas:
min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
max(gen_0':s3_0(n397_0), gen_0':s3_0(n397_0)) → gen_0':s3_0(n397_0), rt ∈ Ω(1 + n3970)
twice(gen_0':s3_0(n893_0)) → gen_0':s3_0(*(2, n893_0)), rt ∈ Ω(1 + n8930)
-(gen_0':s3_0(n1197_0), gen_0':s3_0(n1197_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n11970)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
f
(19) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol f.
(20) Obligation:
Innermost TRS:
Rules:
min(
0',
y) →
0'min(
x,
0') →
0'min(
s(
x),
s(
y)) →
s(
min(
x,
y))
max(
0',
y) →
ymax(
x,
0') →
xmax(
s(
x),
s(
y)) →
s(
max(
x,
y))
twice(
0') →
0'twice(
s(
x)) →
s(
s(
twice(
x)))
-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
p(
s(
x)) →
xf(
s(
x),
s(
y)) →
f(
-(
max(
s(
x),
s(
y)),
min(
s(
x),
s(
y))),
p(
twice(
min(
x,
y))))
Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
twice :: 0':s → 0':s
- :: 0':s → 0':s → 0':s
p :: 0':s → 0':s
f :: 0':s → 0':s → f
hole_0':s1_0 :: 0':s
hole_f2_0 :: f
gen_0':s3_0 :: Nat → 0':s
Lemmas:
min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
max(gen_0':s3_0(n397_0), gen_0':s3_0(n397_0)) → gen_0':s3_0(n397_0), rt ∈ Ω(1 + n3970)
twice(gen_0':s3_0(n893_0)) → gen_0':s3_0(*(2, n893_0)), rt ∈ Ω(1 + n8930)
-(gen_0':s3_0(n1197_0), gen_0':s3_0(n1197_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n11970)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(21) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
(22) BOUNDS(n^1, INF)
(23) Obligation:
Innermost TRS:
Rules:
min(
0',
y) →
0'min(
x,
0') →
0'min(
s(
x),
s(
y)) →
s(
min(
x,
y))
max(
0',
y) →
ymax(
x,
0') →
xmax(
s(
x),
s(
y)) →
s(
max(
x,
y))
twice(
0') →
0'twice(
s(
x)) →
s(
s(
twice(
x)))
-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
p(
s(
x)) →
xf(
s(
x),
s(
y)) →
f(
-(
max(
s(
x),
s(
y)),
min(
s(
x),
s(
y))),
p(
twice(
min(
x,
y))))
Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
twice :: 0':s → 0':s
- :: 0':s → 0':s → 0':s
p :: 0':s → 0':s
f :: 0':s → 0':s → f
hole_0':s1_0 :: 0':s
hole_f2_0 :: f
gen_0':s3_0 :: Nat → 0':s
Lemmas:
min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
max(gen_0':s3_0(n397_0), gen_0':s3_0(n397_0)) → gen_0':s3_0(n397_0), rt ∈ Ω(1 + n3970)
twice(gen_0':s3_0(n893_0)) → gen_0':s3_0(*(2, n893_0)), rt ∈ Ω(1 + n8930)
-(gen_0':s3_0(n1197_0), gen_0':s3_0(n1197_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n11970)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(24) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
(25) BOUNDS(n^1, INF)
(26) Obligation:
Innermost TRS:
Rules:
min(
0',
y) →
0'min(
x,
0') →
0'min(
s(
x),
s(
y)) →
s(
min(
x,
y))
max(
0',
y) →
ymax(
x,
0') →
xmax(
s(
x),
s(
y)) →
s(
max(
x,
y))
twice(
0') →
0'twice(
s(
x)) →
s(
s(
twice(
x)))
-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
p(
s(
x)) →
xf(
s(
x),
s(
y)) →
f(
-(
max(
s(
x),
s(
y)),
min(
s(
x),
s(
y))),
p(
twice(
min(
x,
y))))
Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
twice :: 0':s → 0':s
- :: 0':s → 0':s → 0':s
p :: 0':s → 0':s
f :: 0':s → 0':s → f
hole_0':s1_0 :: 0':s
hole_f2_0 :: f
gen_0':s3_0 :: Nat → 0':s
Lemmas:
min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
max(gen_0':s3_0(n397_0), gen_0':s3_0(n397_0)) → gen_0':s3_0(n397_0), rt ∈ Ω(1 + n3970)
twice(gen_0':s3_0(n893_0)) → gen_0':s3_0(*(2, n893_0)), rt ∈ Ω(1 + n8930)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(27) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
(28) BOUNDS(n^1, INF)
(29) Obligation:
Innermost TRS:
Rules:
min(
0',
y) →
0'min(
x,
0') →
0'min(
s(
x),
s(
y)) →
s(
min(
x,
y))
max(
0',
y) →
ymax(
x,
0') →
xmax(
s(
x),
s(
y)) →
s(
max(
x,
y))
twice(
0') →
0'twice(
s(
x)) →
s(
s(
twice(
x)))
-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
p(
s(
x)) →
xf(
s(
x),
s(
y)) →
f(
-(
max(
s(
x),
s(
y)),
min(
s(
x),
s(
y))),
p(
twice(
min(
x,
y))))
Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
twice :: 0':s → 0':s
- :: 0':s → 0':s → 0':s
p :: 0':s → 0':s
f :: 0':s → 0':s → f
hole_0':s1_0 :: 0':s
hole_f2_0 :: f
gen_0':s3_0 :: Nat → 0':s
Lemmas:
min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
max(gen_0':s3_0(n397_0), gen_0':s3_0(n397_0)) → gen_0':s3_0(n397_0), rt ∈ Ω(1 + n3970)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(30) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
(31) BOUNDS(n^1, INF)
(32) Obligation:
Innermost TRS:
Rules:
min(
0',
y) →
0'min(
x,
0') →
0'min(
s(
x),
s(
y)) →
s(
min(
x,
y))
max(
0',
y) →
ymax(
x,
0') →
xmax(
s(
x),
s(
y)) →
s(
max(
x,
y))
twice(
0') →
0'twice(
s(
x)) →
s(
s(
twice(
x)))
-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
p(
s(
x)) →
xf(
s(
x),
s(
y)) →
f(
-(
max(
s(
x),
s(
y)),
min(
s(
x),
s(
y))),
p(
twice(
min(
x,
y))))
Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
twice :: 0':s → 0':s
- :: 0':s → 0':s → 0':s
p :: 0':s → 0':s
f :: 0':s → 0':s → f
hole_0':s1_0 :: 0':s
hole_f2_0 :: f
gen_0':s3_0 :: Nat → 0':s
Lemmas:
min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(33) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
(34) BOUNDS(n^1, INF)